Das ist eine noch ungeprüfte Sammlung!

Definition des Tangens und Kotangens

Daraus folgen:

$$\tan x \cdot \cot x = 1$$

$$\tan x = \frac{1}{\cot x}$$

$$\cot x = \frac{1}{\tan x}$$

Anwendungsbeispiel aus der Integralrechnung

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$

Das neue Integral ist durch die Substitution u=cosx lösbar (wegen der Substitutionsregel 3a)

Trigonometrischer Pythagoras

Umgestellt nach dem Quadrat der Funktionen:

- $\blacksquare \sin^2 x = 1 \cos^2 x$

Umgestellt nach den Funktionen:

- $\blacksquare \quad \sin x = \sqrt{1 \cos^2 x}$
- $\cos x = \sqrt{1 \sin^2 x}$

Typisches Anwendungsbeispiel aus der Integralrechnung

$$\left| \frac{\sin^2 x}{\cos^2 x} dx \right| = \left| \frac{1 - \cos^2 x}{\cos^2 x} dx \right| = \left| \frac{1}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x} dx \right| = \left| \frac{1}{\cos^2 x} - 1 dx \right| = \left$$

$$\int \frac{1}{\cos^2 x} dx - \int 1 dx$$
 Beide Integrale sind nun Grundintegrale!

Formeln für den doppelten Winkel

$$\cos(2x) = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$$

Für die Praxis braucht man oft die Form, die nach dem quadratischen Term umgestellt ist:

$$\blacksquare \quad \sin^2 x = \frac{1-\cos(2x)}{2}$$

Anwendungsbeispiel aus der Integralrechnung

$$\boxed{\int \sin^2 x \ dx} = \boxed{\int \frac{1 - \cos(2x)}{2} \ dx} = \boxed{\frac{1}{2} \int [1 - \cos(2x)] \ dx} = \boxed{\frac{1}{2} \int 1 \ dx - \frac{1}{2} \int \cos(2x) \ dx}$$

Das letzte Integral ist leicht durch die Substitution u=2x lösbar.

Wie man sieht, eignen sich diese Formeln dazu, das <u>Quadrat einer Winkelfunktion</u> als <u>"verkettete Funktion mit linearer innerer Funktion"</u> zu schreiben [z.B. cos(2x)]. Diese lassen sich leicht durch Substitution lösen (Substitutionsregel 2a).

Formeln für den halben Winkel

Additionstheoreme

 $\boxed{ \sin(\mathbf{x}_1 \pm \mathbf{x}_2) = \sin(\mathbf{x}_1)\cos(\mathbf{x}_2) \pm \sin(\mathbf{x}_2)\cos(\mathbf{x}_1) } \text{ für alle } \mathbf{x}_1, \, \mathbf{x}_2 \in \mathbb{R}$

 $\bigcirc \left[\cos \left(\mathbf{x_1} \pm \mathbf{x_2} \right) = \cos \left(\mathbf{x_1} \right) \cos \left(\mathbf{x_2} \right) \mp \sin \left(\mathbf{x_1} \right) \sin \left(\mathbf{x_2} \right) \right] \text{ für alle } \mathbf{x_1}, \, \mathbf{x_2} \in \mathbb{R}$

 $\boxed{ \tan \left(\mathbf{x}_1 \pm \mathbf{x}_2 \right) = \frac{\tan \mathbf{x}_1 \pm \tan \mathbf{x}_2}{\mathbf{1} \mp \tan \mathbf{x}_1 \cdot \tan \mathbf{x}_2} } \quad \mathbf{x}_1, \, \mathbf{x}_2, \, \left(\mathbf{x}_1 \pm \mathbf{x}_2 \right) \in \mathbb{R} \setminus \left\{ \mathbf{k} \pi + \frac{\pi}{2}, \mathbf{k} \in \mathbb{Z} \right\}$

Anwendungsbeispiel aus der Integralrechnung

zur Zeit kein Beispiel

Summenformeln

$$\bullet \quad tan x_1 + tan x_2 = \frac{sin(x_1 + x_2)}{cos x_1 \cdot cos x_2}$$

$$\mathbf{G} \quad \mathbf{tan} \ \mathbf{x}_1 - \mathbf{tan} \ \mathbf{x}_2 = \frac{\mathbf{sin}(\mathbf{x}_1 - \mathbf{x}_2)}{\mathbf{cos} \ \mathbf{x}_1 \cdot \mathbf{cos} \ \mathbf{x}_2}$$

Anwendungsbeispiel aus der Integralrechnung

zur Zeit kein Beispiel

ProduktformeIn

Anwendungsbeispiel aus der Integralrechnung

zur Zeit kein Beispiel

Beziehungen zwischen Winkelfunktionen

Beziehungen zwischen den Winkelfunktionen

Aus 5a erhält man durch einfaches Formelumstellen die Hilfssätze 5b und 5c

$$\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$$

$$5b \cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha}$$

$$\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha \qquad \boxed{5b} \quad \cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha} \qquad \boxed{5c} \quad \tan^2 \alpha = \frac{1 - \cos^2 \alpha}{\cos^2 \alpha}$$

Aus 6a erhält man durch einfaches Formelumstellen die Hilfssätze 6b und 6c

$$\boxed{\underline{6a}} \quad \frac{1}{\sin^2 \alpha} = 1 + \cot^2 \alpha$$

$$\frac{1}{\sin^2 \alpha} = 1 + \cot^2 \alpha \qquad \boxed{6b} \quad \sin^2 \alpha = \frac{1}{1 + \cot^2 \alpha} \qquad \boxed{6c} \quad \cot^2 \alpha = \frac{1 - \sin^2 \alpha}{\sin^2 \alpha}$$

$$\boxed{6c} \quad \cot^2 \alpha = \frac{1 - \sin^2 \alpha}{\sin^2 \alpha}$$

Mit Satz 7-10 kann man jedes Winkelverhältnis in ein anderes umformen

(die Vorzeichen der Wurzeln hängen dabei vom Quadranten ab)

$$\boxed{7} \sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \frac{\tan \alpha}{\pm \sqrt{1 + \tan^2 \alpha}} = \frac{1}{\pm \sqrt{1 + \cot^2 \alpha}}$$

8
$$\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \frac{\cot \alpha}{\pm \sqrt{1 + \cot^2 \alpha}} = \frac{1}{\pm \sqrt{1 + \tan^2 \alpha}}$$

$$\boxed{9} \quad \tan \alpha = \frac{\sin \alpha}{\pm \sqrt{1 - \sin^2 \alpha}} = \frac{\pm \sqrt{1 - \cos^2 \alpha}}{\cos \alpha} = \frac{1}{\cot \alpha}$$

10
$$\cot \alpha = \frac{\pm \sqrt{1 - \sin^2 \alpha}}{\sin \alpha} = \frac{\cos \alpha}{\pm \sqrt{1 - \cos^2 \alpha}} = \frac{1}{\tan \alpha}$$